Why not build #OpenJDK 9 using #Docker ? – Part 2 of 2

…continuing from Why not build #OpenJDK 9 using #Docker ? – Part 1 of 2.

I ran into a number of issues and you can see from my commits, I pulled myself out of it, but to run this Dockerfile from the command-line I used this instruction:

$ docker build -t neomatrix369/openjdk9 .

you can also do it using the below if you have not set your permissions:

$ sudo docker build -t neomatrix369/openjdk9 .

and get the below (summarised) output:

Sending build context to Docker daemon 3.072 kB
Sending build context to Docker daemon 
Step 0 : FROM phusion/baseimage:latest
 ---> 5a14c1498ff4
Step 1 : MAINTAINER Mani Sarkar (from @adoptopenjdk)
 ---> Using cache
 ---> 95e30b7f52b9
Step 2 : RUN apt-get update &&   apt-get install -y     libxt-dev zip pkg-config libX11-dev libxext-dev     libxrender-dev libxtst-dev libasound2-dev libcups2-dev libfreetype6-dev &&   rm -rf /var/lib/apt/lists/*
 ---> Using cache
 ---> 1ea3bbb15c2d
Step 3 : RUN apt-get update
 ---> Using cache
 ---> 6c3938f4d23d
Step 4 : RUN apt-get install -y mercurial ca-certificates-java build-essential
 ---> Using cache
 ---> e3f99b5a3bd3
Step 5 : RUN cd /tmp &&   hg clone http://hg.openjdk.java.net/jdk9/jdk9 openjdk9 &&   cd openjdk9 &&   sh ./get_source.sh
 ---> Using cache
 ---> 26cfaf16b9fa
Step 6 : RUN apt-get install -y wget &&   wget --no-check-certificate --header "Cookie: oraclelicense=accept-securebackup-cookie" http://download.oracle.com/otn-pub/java/jdk/8u45-b14/jdk-8u45-linux-x64.tar.gz
 ---> Using cache
 ---> 696889250fed
Step 7 : RUN tar zxvf jdk-8u45-linux-x64.tar.gz -C /opt
 ---> Using cache
 ---> c25cc9201c1b
Step 8 : RUN cd /tmp/openjdk9 &&   bash ./configure --with-cacerts-file=/etc/ssl/certs/java/cacerts --with-boot-jdk=/opt/jdk1.8.0_45
 ---> Using cache
 ---> 4e425de379e6
Step 9 : RUN cd /tmp/openjdk9 &&   make clean images
 ---> Using cache
 ---> 2d9e17c870be
Step 10 : RUN cd /tmp/openjdk9 &&   cp -a build/linux-x86_64-normal-server-release/images/jdk     /opt/openjdk9
 ---> Using cache
 ---> 9250fac9b500
Step 11 : RUN cd /tmp/openjdk9 &&   find /opt/openjdk9 -type f -exec chmod a+r {} + &&   find /opt/openjdk9 -type d -exec chmod a+rx {} +
 ---> Using cache
 ---> d0c597d045d4
Step 12 : ENV PATH /opt/openjdk9/bin:$PATH
 ---> Using cache
 ---> 3965c3e47855
Step 13 : ENV JAVA_HOME /opt/openjdk9
 ---> Using cache
 ---> 5877e8efd939
Successfully built 5877e8efd939

The above action creates an image which is stored in your local repository (use docker images to enlist the images in the repo). If you want to load the image into a container, and access the files it has built or see anything else, do the below:

$ sudo docker run -it --name openjdk9 neomatrix369/openjdk9 /bin/bash

this will take you to a bash prompt into the container and you can run any of your linux commands and access the file system.

Explaining docker run

$ sudo docker run -it --name openjdk9 neomatrix369/openjdk9 java -version

will show you this

openjdk version "1.9.0-internal"
OpenJDK Runtime Environment (build 1.9.0-internal-_2015_06_04_06_46-b00)
OpenJDK 64-Bit Server VM (build 1.9.0-internal-_2015_06_04_06_46-b00, mixed mode)

Here’s a breakdown of the docker run command:

docker run The command to create and start a new Docker container.
-it To run in interactive mode, so you can see the after running the container.
neomatrix369/openjdk9 This is a reference to the image tag by name (which we created above).
java -version Runs the java command asking its version, inside the containing, which is assisted by the two environment variables PATH and JAVA_HOME which was set in the Dockerfile above.

Footnotes

You might have noticed I grouped very specific instructions with each step, especially the RUN commands, its because, each time I got one of these wrong, it would re-execute the step again, including the steps that ran fine and didn’t need re-executing. Not only is this unnecessary its not using our resources efficiently which is what Docker brings us. So any addition, edition or deletion to any step will only result in that step being executed, and not the other steps that are fine.

So one of the best practises is to keep the steps granular enough and pre-load files and data beforehand and give it to docker. It has amazing caching and archiving mechanisms built in.

Save our work

As we know if we do not save the container into the image, our changes are lost.

If I didn’t use the docker build command I used earlier I could have, after the build process was completed and image created, used the below command:

$ sudo docker commit [sha of the image] neomatrix369/openjdk9

Sharing your docker image on Docker hub

Once you are happy with your changes, and want to share it with community at large, do the below:

$ sudo docker push neomatrix369/openjdk9

and you will see these depending on which of your layers have been found in the repo and which ones are new (this one is an example snapshot of the process):

The push refers to a repository [neomatrix369/openjdk9] (len: 1)
5877e8efd939: Image already exists 
3965c3e47855: Image already exists 
d0c597d045d4: Image already exists 
9250fac9b500: Image already exists 
2d9e17c870be: Buffering to Disk
.
.
.

There is plenty of room for development and improvement of this Docker script. So happy hacking and would love to hear your feedback or contributions from you.

BIG Thanks

Big thanks to the below two who proof-read my post and added value to it, whilst enjoying the #Software #Craftsmanship developer community (organised and supported by @LSCC):
Oliver Nautsch – @ollispieps (JUG Switzerland)
Amir Bazazi (@Codurance) – @amirbazazi

Special thanks to Roberto Cortez (@radcortez) for your Docker posts, these inspired and helped me write my first Docker post.

Resources

[1] Docker
[2] Get into Docker – A Guide for Total Newbies
[3] Docker for Total Newbies Part 2: Distribute Your Applications with Docker Images
[4] Docker posts on Voxxed
[5] OpenJDK
[6] Building OpenJDK
[7] Building OpenJDK on Linux, MacOs and Windows
[8] Virtual Machines (OpenJDK)
[9] Build your own OpenJDK
[10] Vagrant script (OpenJDK)
[11] YOUR DOCKER IMAGE MIGHT BE BROKEN without you knowing it
[12] Dockerfile on github
[13] Adopt OpenJDK: Getting Started Kit
[14] London Java Community

Why not build #OpenJDK 9 using #Docker ? – Part 1 of 2

Introduction

I think I have joined the Docker [1] party a bit late but that means by now everyone knows what Docker is and all the other basic fundamentals which I can very well skip, but if you are still interested, please check these posts Get into Docker – A Guide for Total Newbies [2] and Docker for Total Newbies Part 2: Distribute Your Applications with Docker Images [3]. And if you still want to know more about this widely spoken topic, check out these Docker posts on Voxxed [4].

Why ?

Since everyone has been doing some sort of provisioning or spinning up of dev or pre-prod or test environments using Docker [1] I decided to do the same but with my favourite project i.e. OpenJDK [5].

So far you can natively build OpenJDK [6] across Linux, MacOs and Windows [7], or do the same things via virtual machines or vagrant instances, see more on then via these resources Virtual Machines, [8] Build your own OpenJDK [9] and this vagrant script [10]. All part of the Adopt OpenJDK initiative lead by London Java Community [14] and supported by JUGs all over the world.

Requirements

Most parts of post is for those using Linux distributions (this one was created on Ubuntu 14.04). Linux, MacOS and Windows users please refer to Docker‘s  Linux, MacOS and Windows instructions respectively.

Hints: MacOS and Windows users will need to install Boot2Docker and remember to run the below two commands (and check your Docker host environment variables):

$ boot2docker init
$ boot2docker up 
$ boot2docker shellinit 

For the MacOS, if the above throw FATA[…] error messages, please try the below:

$ sudo boot2docker init
$ sudo boot2docker up 
$ sudo boot2docker shellinit 

For rest of the details please refer to the links provided above. Once you have the above in place for the Windows or MacOS platform, by merely executing the Dockerfile using the docker build and docker run commands you can create / update a container and run it respectively.

*** Please refer to the above links and ensure Docker works for you for the above platforms – try out tutorials or steps proving that Docker run as expected before proceeding further. ***

Building OpenJDK 9 using Docker

Now I will show you how to do the same things as mentioned above using Docker.

So I read the first two resource I shared so far (and wrote the last ones). So lets get started, and I’m going to walk you through what the Dockerfile looks like, as I take you through each section of the Dockerfile code.

*** Please note the steps below are not meant to be executed on your command prompty, they form an integral part of the Dockerfile which you can download from here at the end of this post. ***

You have noticed unlike everyone else I have chosen a different OS image i.e. phusion/baseimage, why? Read YOUR DOCKER IMAGE MIGHT BE BROKEN without you knowing it [11], to learn more about it.

FROM phusion/baseimage:latest

Each of the RUN steps below when executed becomes a Docker layer in isolation and gets assigned a SHA like this i.e. 95e30b7f52b9.

RUN \
  apt-get update && \
  apt-get install -y \
    libxt-dev zip pkg-config libX11-dev libxext-dev \
    libxrender-dev libxtst-dev libasound2-dev libcups2-dev libfreetype6-dev && \
  rm -rf /var/lib/apt/lists/*

The base image is updated and a number of dependencies are installed i.e. Mercurial (hg) and build-essential.

RUN \
  apt-get update && \
  apt-get install -y mercurial ca-certificates-java build-essential

Clone the OpenJDK 9 sources and download the latest sources from mercurial. You will notice that each of these steps are prefixed by this line cd /tmp &&, this is because each instruction is run in its own layer, as if it does not remember where it was when the previous instruction was run. Nothing to worry about, all your changes are still intact in the container.

RUN \
  cd /tmp && \
  hg clone http://hg.openjdk.java.net/jdk9/jdk9 openjdk9 && \
  cd openjdk9 && \
  sh ./get_source.sh

Install only what you need when you need them, see below I downloaded wget and then the jdk binary. I also learnt how to use wget by passing the necessary params and headers to make the server give us the binary we request. Finally un-tar the file using the famous tar command.

RUN \
  apt-get install -y wget && \
  wget --no-check-certificate --header "Cookie: oraclelicense=accept-securebackup-cookie" \ 
http://download.oracle.com/otn-pub/java/jdk/8u45-b14/jdk-8u45-linux-x64.tar.gz

RUN \
  tar zxvf jdk-8u45-linux-x64.tar.gz -C /opt

Run configure with the famous –with-boot-jdk=/opt/jdk1.8.0_45 to set the bootstrap jdk to point to jdk1.8.0_45.

RUN \
  cd /tmp/openjdk9 && \
  bash ./configure --with-cacerts-file=/etc/ssl/certs/java/cacerts --with-boot-jdk=/opt/jdk1.8.0_45

Now run the most important command:

RUN \  
  cd /tmp/openjdk9 && \
  make clean images

Once the build is successful, the artefacts i.e. jdk and jre images are created in the build folder.

RUN \  
  cd /tmp/openjdk9 && \
  cp -a build/linux-x86_64-normal-server-release/images/jdk \
    /opt/openjdk9

Below are some chmod ceremonies across the files and directories in the openjdk9 folder.

RUN \  
  cd /tmp/openjdk9 && \
  find /opt/openjdk9 -type f -exec chmod a+r {} + && \
  find /opt/openjdk9 -type d -exec chmod a+rx {} +

Two environment variable i.e. PATH and JAVA_HOME are created with the respective values assigned to them.

ENV PATH /opt/openjdk9/bin:$PATH
ENV JAVA_HOME /opt/openjdk9

You can find the entire source for the entire Dockerfile on github [12].

…more of this in the next post, Why not build #OpenJDK 9 using #Docker ? – Part 2 of 2, we will use the docker build, docker run commands and some more docker stuff.